SCMData Documentation
Release 0.13.1

Jared Lewis, Zebedee Nicholls

Oct 26, 2021

DOCUMENTATION:

1 Brief summary

L1 LICENSE . . . v v o o o e e e e e e e e e 1
2 Indices and tables 79
Python Module Index 81

Index 83

CHAPTER
ONE

BRIEF SUMMARY

scmdata provides some useful data handling routines for dealing with data related to simple climate models (SCMs
aka reduced complexity climate models, RCMs). In particular, it provides a high-performance way of handling and
serialising (including to netCDF) timeseries data along with attached metadata. scmdata was inspired by pyam and
was originally part of the openscm package.

1.1 License

scmdata is free software under a BSD 3-Clause License, see LICENSE.

1.1.1 Installation

scmdata is tested to work with Python 3.6 and above

Installing with conda

The easiest way to install scmdata is using conda, either using the full Anaconda distribution which includes a collection
of popular data science packages or the smaller Miniconda distribution. Using conda is the recommended method for
installing scmdata for most users.

conda install -c conda-forge netcdf-scm

Installing with pip

scmdata can also be installed from PyPi using pip.

We recommend creating a virtual environment to manage this and any other libraries your project requires.

pip install scmdata

https://github.com/IAMconsortium/pyam
https://github.com/openscm/openscm
https://github.com/openscm/scmdata/blob/master/LICENSE
https://docs.continuum.io/anaconda/
https://docs.conda.io/en/latest/miniconda.html
https://pypi.org/

SCMData Documentation, Release 0.13.1

1.1.2 Data Model

Analysing the results from simple climate models involves a lot of timeseries handling, including:
* filtering
* plotting
* resampling
* serialization/deserialisation
* computation

As aresult, secmdata’s approach to data handling focusses on efficient handling of timeseries.

The ScmRun class

The scmdata.ScmRun class represents a collection of timeseries data including metadata and provides methods for
manipulating the data. Internally, ScmRun stores the timeseries data in a single pandas .DataFrame and the timeseries
metadata pandas.MultiIndex of type pandas.Categorical, for efficient indexing.

This class is the primary way of handling timeseries data within the scmdata package. For example, the ScmRun can be
filtered to only find the subset of data which have a "scenario" metadata label equal to "green" (see ScmRun. filter
for full details). Other operations include grouping, setting and (basic) plotting.

The complete set of manipulation features can be found in the documentation pages of ScmRun.

ScmRun has three key properties and one key method, which allow the user to quickly access their data in more standard
formats:

* values returns all of the timeseries as a single numpy . ndarray without any metadata or indication of the time
axis.

» meta returns all of the timeseries’ metadata as a single pandas.DataFrame. This allows users to quickly have
an overview of the timeseries held by scmdata. ScmRun without having to also view the data itself.

* metadata <scmdata.run.ScmRun.metadata stores run-specific metadata, i.e. metadata which isn’t tied to
any timeseries specifically.

e timeseries() combines values and meta to form a pandas.DataFrame whose index is equal to scmdata.
ScmRun.meta and whose values are equal to scmdata.ScmRun.values. The columns of the output of
timeseries() are the time axis of the data.

Metadata handling

semdata can store any kind of metadata about the timeseries, without restriction. This combination allows it to be a
high performing, yet flexible library for timeseries data.

However, to do this it must make assumptions about the type of data it holds and these assumptions come with tradeoffs.
In particular, scmdata cannot hold metadata at a level finer than a complete timeseries. For example, it couldn’t handle
a case where one point in a timeseries needed to be labelled with an ‘erroneous’ label. In such a case the entire
timeseries would have to be labelled ‘erroneous’ (or a new timeseries made with just that data point, which may not be
very performant). If behaviour of this type is required, we suggest trying another data handling approach.

2 Chapter 1. Brief summary

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.MultiIndex.html#pandas.MultiIndex
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

SCMData Documentation, Release 0.13.1

The ScmDatabase class

When handling large datasets which may not fit into memory, it is important to be able to query subsets of the dataset
without having to iterate over the entire dataset. scmdata.database.ScmDatabase helps with this issue by disag-
gregating a dataset into subsets according to unique combinations of metadata. The metadata of interest is specified by
the user so that the database can be adapted to any use-case or access pattern.

One of the major benefits of scmdata.database.ScmDatabase is that the taxonomy of metadata does not need to
be known at database creation making it easy to add new data to the database. Each unique subset of the database is
stored as a single netCDF file. This ensures that if timeseries with new metadata are saved to the database, the existing
files in the database do not need to be modified. Instead new files are written expanding the directory structure to
accommodate the new metadata values.

Filtering using the metadata columns of interest is also very simple as the contents of a given file can be determined from
the directory structure without having to load the file. Each file can then be loaded as the data is needed, minimising
the need for reading data which will then immediately be filtered away of extra data that is needed to be unnecessarily
read and then filtered away.

1.1.3 Development

If you're interested in contributing to SCMData, we’d love to have you on board! This section of the docs will (once
we’ve written it) detail how to get setup to contribute and how best to communicate.

» Contributing
* Getting setup
— Getting help
* Development tools
% Other tools
* Formatting
* Buiding the docs
— Gotchas
— Docstring style
* Releasing
— First step
— PyPI

— Conda

* Why is there a Makefile in a pure Python repository?

Push to repository

1.1. License 3

SCMData Documentation, Release 0.13.1

Contributing

All contributions are welcome, some possible suggestions include:
* tutorials (or support questions which, once solved, result in a new tutorial :D)
* blog posts
* improving the documentation
* bug reports
* feature requests
e pull requests

Please report issues or discuss feature requests in the SCMData issue tracker. If your issue is a feature request or a bug,
please use the templates available, otherwise, simply open a normal issue :)

As a contributor, please follow a couple of conventions:

* Create issues in the SCMData issue tracker for changes and enhancements, this ensures that everyone in the
community has a chance to comment

* Be welcoming to newcomers and encourage diverse new contributors from all backgrounds: see the Python
Community Code of Conduct

* Only push to your own branches, this allows people to force push to their own branches as they need without fear
or causing others headaches

e Start all pull requests as draft pull requests and only mark them as ready for review once they’ve been rebased
onto master, this makes it much simpler for reviewers

* Try and make lots of small pull requests, this makes it easier for reviewers and faster for everyone as review time
grows exponentially with the number of lines in a pull request

Getting setup
To get setup as a developer, we recommend the following steps (if any of these tools are unfamiliar, please see the
resources we recommend in Development tools):

1. Install conda and make

2. Runmake virtual-environment, if that fails you can try doing it manually

1. Change your current directory to SCMData’s root directory (i.e. the one which contains README.rst), cd
scmdata

Create a virtual environment to use with SCMData python3 -m venv venv
Activate your virtual environment source ./venv/bin/activate

Upgrade pip pip intall --upgrade pip

A

Install the development dependencies (very important, make sure your virtual environment is active before
doing this) pip install -e .[dev]

3. Make sure the tests pass by running make test-all, if that fails the commands are
1. Activate your virtual environment source ./venv/bin/activate

2. Run the unit and integration tests pytest --cov -r a --cov-report term-missing

4 Chapter 1. Brief summary

https://github.com/openscm/scmdata/issues
https://github.com/openscm/scmdata/issues
https://www.python.org/psf/codeofconduct/
https://www.python.org/psf/codeofconduct/

SCMData Documentation, Release 0.13.1

Getting help

Whilst developing, unexpected things can go wrong (that’s why it’s called ‘developing’, if we knew what we were doing,
it would already be ‘developed’). Normally, the fastest way to solve an issue is to contact us via the issue tracker. The
other option is to debug yourself. For this purpose, we provide a list of the tools we use during our development as
starting points for your search to find what has gone wrong.

Development tools

This list of development tools is what we rely on to develop SCMData reliably and reproducibly. It gives you a few
starting points in case things do go inexplicably wrong and you want to work out why. We include links with each of
these tools to starting points that we think are useful, in case you want to learn more.

* Git

e Make

¢ Conda virtual environments

* Pip and pip virtual environments
o Tests

— we use a blend of pytest and the inbuilt Python testing capabilities for our tests so checkout what we’ve
already done in tests to get a feel for how it works

* Continuous integration (CI)
— we use Travis CI for our CI but there are a number of good providers
* Jupyter Notebooks
— Jupyter is automatically included in your virtual environment if you follow our Getting setup instructions

* Sphinx

Other tools

We also use some other tools which aren’t necessarily the most familiar. Here we provide a list of these along with
useful resources.

* Regular expressions

— we use regex 101.com to help us write and check our regular expressions, make sure the language is set to
Python to make your life easy!

Formatting

To help us focus on what the code does, not how it looks, we use a couple of automatic formatting tools. These
automatically format the code for us and tell use where the errors are. To use them, after setting yourself up (see
Getting setup), simply run make format. Note that make format can only be run if you have committed all your
work i.e. your working directory is ‘clean’. This restriction is made to ensure that you don’t format code without being
able to undo it, just in case something goes wrong.

1.1. License 5

https://github.com/openscm/scmdata/issues
http://swcarpentry.github.io/git-novice/
https://swcarpentry.github.io/make-novice/
https://medium.freecodecamp.org/why-you-need-python-environments-and-how-to-manage-them-with-conda-85f155f4353c
https://www.dabapps.com/blog/introduction-to-pip-and-virtualenv-python/
https://semaphoreci.com/community/tutorials/testing-python-applications-with-pytest
https://docs.pytest.org/en/latest/
https://docs.travis-ci.com/user/for-beginners/
https://travis-ci.com/
https://medium.com/codingthesmartway-com-blog/getting-started-with-jupyter-notebook-for-python-4e7082bd5d46
http://www.sphinx-doc.org/en/master/
https://www.oreilly.com/ideas/an-introduction-to-regular-expressions
regex101.com

SCMData Documentation, Release 0.13.1

Buiding the docs

After setting yourself up (see Gerting setup), building the docs is as simple as running make docs (note, run make -B
docs to force the docs to rebuild and ignore make when it says ‘... index.html is up to date’). This will build the docs
for you. You can preview them by opening docs/build/html/index.html in a browser.

For documentation we use Sphinx. To get ourselves started with Sphinx, we started with this example then used Sphinx’s
getting started guide.

Gotchas

To get Sphinx to generate pdfs (rarely worth the hassle), you require Latexmk. On a Mac this can be installed with
sudo tlmgr install latexmk. You will most likely also need to install some other packages (if you don’t have the
full distribution). You can check which package contains any missing files with tlmgr search --global --file
[filename]. You can then install the packages with sudo tlmgr install [package].

Docstring style

For our docstrings we use numpy style docstrings. For more information on these, here is the full guide and the quick
reference we also use.

Releasing

First step

1. Test installation with dependencies make test-install

2. Update CHANGELOG.rst:
¢ add a header for the new version between master and the latest bullet point
« this should leave the section underneath the master header empty

git add .

git commit -m "release(vX.Y.Z)"

git tag vX.Y.Z

S

Test version updated as intended with make test-install

PyPI

If uploading to PyPI, do the following (otherwise skip these steps)
1. make publish-on-testpypi
2. Go to test PyPI and check that the new release is as intended. If it isn’t, stop and debug.

3. Test the install withmake test-testpypi-install (this doesn’ttestall the imports as most required packages
are not on test PyPI).

Assuming test PyPI worked, now upload to the main repository
1. make publish-on-pypi
2. Go to SCMData’s PyPI and check that the new release is as intended.

6 Chapter 1. Brief summary

http://www.sphinx-doc.org/en/master/
https://pythonhosted.org/an_example_pypi_project/sphinx.html
http://www.sphinx-doc.org/en/master/usage/quickstart.html
http://www.sphinx-doc.org/en/master/usage/quickstart.html
https://mg.readthedocs.io/latexmk.html
https://numpydoc.readthedocs.io/en/latest/format.html
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.html
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.html
https://test.pypi.org/project/scmdata/
https://pypi.org/project/scmdata/

SCMData Documentation, Release 0.13.1

3. Test the install with make test-pypi-install

Conda

10.

Y »® Noow

If you haven’t already, fork the SCMData conda feedstock. In your fork, add the feedstock upstream
withgit remote add upstream https://github.com/conda-forge/scmdata-feedstock (upstream
should now appear in the output of git remote -v)

Update your fork’s master to the upstream master with:
1. git checkout master
2. git fetch upstream
3. git reset --hard upstream/master
Create a new branch in the feedstock for the version you want to bump to.
Edit recipe/meta.yaml and update:
¢ version number in line 2 (don’t include the ‘v’ in the version tag)
* the build number to zero in line 13 (you should only be here if releasing a new version)

 update sha256 in line 10 (you can get the sha from SCMData’s PyPI by clicking on ‘Download files’ on
the left and then clicking on ‘SHA256’ of the . tar.gz file to copy it to the clipboard)

git add .

git commit -m "Update to vX.Y.Z"

git push

Make a PR into the SCMData conda feedstock

If the PR passes (give it at least 10 minutes to run all the CI), merge

Check https://anaconda.org/conda-forge/scmdata to double check that the version has increased (this can take a
few minutes to update)

Push to repository

Finally, push the tags and commit to the repository

1.
2.

git push

git push --tags

Why is there a Makefile in a pure Python repository?

Whilst it may not be standard practice, a Makefile is a simple way to automate general setup (environment setup in
particular). Hence we have one here which basically acts as a notes file for how to do all those little jobs which we
often forget e.g. setting up environments, running tests (and making sure we’re in the right environment), building
docs, setting up auxillary bits and pieces.

1.1. License 7

https://github.com/conda-forge/scmdata-feedstock
https://pypi.org/project/scmdata/
https://github.com/conda-forge/scmdata-feedstock
https://anaconda.org/conda-forge/scmdata

SCMData Documentation, Release 0.13.1

1.1.4 scmdata.database

Database for handling large datasets in a performant, but flexible way

Data is chunked using unique combinations of metadata. This allows for the database to expand as new data is added
without having to change any of the existing data.

Subsets of data are also able to be read without having to load all the data and then filter. For example, one could save
model results from a number of different climate models and then load just the Surface Temperature data for all
models.

class scmdata.database.DatabaseBackend (**kwargs)
Bases: abc.ABC

Abstract backend for serialising/deserialising data
Data is stored as objects represented by keys. These keys can be used later to load data.

delete(key)
Delete a given key

Parameters key (str)—

abstract get(filters)
Get all matching keys for a given filter

Parameters filters (dict of str) — String filters If a level is missing then all values are
fetched

Returns Each item is a key which may contain data which is of interest
Return type list of str

abstract load(key)
Load data at a given key

Parameters key (str)— Key to load
Returns
Return type scmdata.ScmRun

abstract save(sr)
Save data

Parameters sr (scmdata.ScmRun) —
Returns Key where the data is stored
Return type str

class scmdata.database.NetCDFBackend (**kwargs)
Bases: scmdata.database.DatabaseBackend

On-disk database handler for outputs from SCMs

Data is split into groups as specified by levels. This allows for fast reading and writing of new subsets of data
when a single output file is no longer performant or data cannot all fit in memory.

delete(key)
Delete a key

Parameters key (str) -

get (filters)
Get all matching objects for a given filter

8 Chapter 1. Brief summary

https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

SCMData Documentation, Release 0.13.1

Parameters filters (dict of str) — String filters If a level is missing then all values are
fetched

Returns
Return type list of str

get_key(sr)
Get key where the data will be stored

The key is the root directory joined with the other information provided. The filepath is also cleaned to
remove spaces and special characters.

Parameters sr (scmdata.ScmRun) — Data to save
Raises
¢ ValueError - If non-unique metadata is found for each of self.kwargs["levels"]
* KeyError — If missing metadata is found for each of self.kwargs["levels"]
Returns Path in which to save the data without spaces or special characters
Return type str
load (key)

Parameters key (str)—
Returns
Return type scmdata.ScmRun

save(sr)
Save a ScmRun to the database

The dataset should not contain any duplicate metadata for the database levels
Parameters sr (scmdata.ScmRun) — Data to save
Raises
¢ ValueError - If duplicate metadata are present for the requested database levels
» KeyError — If metadata for the requested database levels are not found
Returns Key where the data is saved
Return type str

class scmdata.database.ScmDatabase (roor_dir, levels=('climate_model', 'variable', 'region’, 'scenario’),
backend="netcdf’, backend_config=None)
Bases: object

On-disk database handler for outputs from SCMs

Data is split into groups as specified by levels. This allows for fast reading and writing of new subsets of data
when a single output file is no longer performant or data cannot all fit in memory.

available_data()
Get all the data which is available to be loaded

If metadata includes non-alphanumeric characters then it might appear modified in the returned table. The
original metadata values can still be used to filter data.

Returns

1.1. License 9

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

SCMData Documentation, Release 0.13.1

Return type pd.DataFrame

delete (**filters)
Delete data from the database

Parameters filters (dict of str) - Filters for the data to load.
Defaults to deleting all data if nothing is specified.
Raises ValueError - If a filter for a level not in 1evels is specified

load (disable_tqdm=Fualse, **filters)
Load data from the database

Parameters
e disable_tqdm (bool) — If True, do not show the progress bar
o filters (dict of str : [str, list[str]])- Filters for the data to load.
Defaults to loading all values for a level if it isn’t specified.

If a filter is a list then OR logic is applied within the level. For example, if we have
scenario=["ssp119", "ssp126"] then both the ssp119 and ssp126 scenarios will be
loaded.

Returns Loaded data

Return type scmdata.ScmRun

Raises ValueError - If a filter for a level not in 1evels is specified
If no data matching filters is found

property root_dir
Root directory of the database.

Returns
Return type str

save (scmrun, disable_tqdm=False)
Save data to the database

The results are saved with one file for each unique combination of levels in a directory structure under-
neath root_dir.

Use available_data() to see what data is available. Subsets of data can then be loaded as an scmdata.
ScmRun using load().

Parameters
e scmrun (scmdata.ScmRun) — Data to save.

The timeseries in this run should have valid metadata for each of the columns specified in
levels.

e disable_tqdm (bool) — If True, do not show the progress bar
Raises KeyError — If a filter for a level not in 1evels is specified

scmdata.database.ensure_dir_exists(fp)
Ensure directory exists

Parameters fp (str) - Filepath of which to ensure the directory exists

10 Chapter 1. Brief summary

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str

SCMData Documentation, Release 0.13.1

1.1.5 scmdata.errors

Custom errors and exceptions used by scmdata

exception scmdata.errors.DuplicateTimesError (time_index)
Bases: ValueError

Error raised when times are duplicated

exception scmdata.errors.MissingRequiredColumnError (columns)
Bases: ValueError

Error raised when an operation produces missing metadata columns

exception scmdata.errors.NonUniqueMetadataError (meta)
Bases: ValueError

Error raised when metadata is not unique

1.1.6 scmdata.filters

Helpers for filtering data in scmdata.run. ScmRun.
Based upon pyam.utils.

scmdata.filters.datetime_match(data: List, dts: Union[List[datetime.datetime], datetime.datetime]) —
numpy.ndarray
Match datetimes in time columns for data filtering.

Parameters
* data - Input data to perform filtering on
 dts — Datetimes to use for filtering
Returns Array where True indicates a match
Return type numpy.ndarray of bool
Raises TypeError — dts contains int

scmdata. filters.day_match(data: List, days: Union[List[str], List[int], int, str]) — numpy.ndarray
Match days in time columns for data filtering.

Parameters
» data - Input data to perform filtering on
» days — Days to match
Returns Array where True indicates a match
Return type numpy.ndarray of bool

scmdata. filters. find_depth(mera_col: pandas.core.series.Series, s: str, level: Union[int, str], separator: str
='1") = numpy.ndarray
Find all values which match given depth from a filter keyword.

Parameters
* meta_col — Column in which to find values which match the given depth

* s — Filter keyword, from which level should be applied

1.1. License 11

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

SCMData Documentation, Release 0.13.1

* level - Depth of value to match as defined by the number of separator in the value name.
If an int, the depth is matched exactly. If a str, then the depth can be matched as either “X-”,
for all levels up to level “X”, or “X+”, for all levels above level “X”.

» separator — The string used to separate levels in s. Defaults to a pipe (“[”).
Returns Array where True indicates a match
Return type numpy.ndarray of bool
Raises ValueError — If level cannot be understood

scmdata. filters.hour_match(data: List, hours: Union[List[int], int]) — numpy.ndarray
Match hours in time columns for data filtering.

Parameters
* data - Input data to perform filtering on
* hours — Hours to match
Returns Array where True indicates a match
Return type numpy.ndarray of bool

scmdata.filters.is_in(vals: List, items: List) — numpy.ndarray
Find elements of vals which are in items.

Parameters
¢ vals — The list of values to check

* items - The options used to determine whether each element of vals is in the desired subset
or not

Returns Array of the same length as vals where the element is True if the corresponding element
of vals is in items and False otherwise

Return type numpy.ndarray of bool

scmdata. filters.month_match(dara: List, months: Union[List[str], List[int], int, str]) — numpy.ndarray
Match months in time columns for data filtering.

Parameters
* data - Input data to perform filtering on
» months — Months to match
Returns Array where True indicates a match
Return type numpy.ndarray of bool

scmdata. filters.pattern_match(meta_col: pandas.core.series.Series, values: Union[lIterable[str], str], level:
Optional[Union[str, int]] = None, regexp: bool = False, separator: str ="|")
— numpy.ndarray
Filter data by matching metadata columns to given patterns.

Parameters
» meta_col — Column to perform filtering on
» values — Values to match
* level — Passed to find_depth(). For usage, see docstring of find_depth().

» regexp — If True, match using regexp rather than our pseudo regexp syntax.

12 Chapter 1. Brief summary

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

SCMData Documentation, Release 0.13.1

* has_nan - If True, convert all nan values in meta_col to empty string before applying fil-
ters. This means that “”” and “*” will match rows with numpy .nan. If False, the conversion
is not applied and so a search in a string column which contains numpy .nan will result in a
TypeError.

» separator — String used to separate the hierarchy levels in values. Defaults to ‘|’
Returns Array where True indicates a match
Return type numpy.ndarray of bool

Raises TypeError - Filtering is performed on a string metadata column which contains numpy . nan
and has_nan is False

scmdata.filters.time_match(data: List, times: Union[List[str], List[int], int, str], conv_codes: List[str],
strptime_attr: str, name: str) — numpy.ndarray
Match times by applying conversion codes to filtering list.

Parameters
 data - Input data to perform filtering on
e times — Times to match

» conv_codes — If times contains strings, conversion codes to try passing to time.
strptime() to convert times to datetime.datetime

e strptime_attr - If times contains strings, the datetime.datetime attribute to finalize
the conversion of strings to integers

* name — Name of the part of a datetime to extract, used to produce useful error messages.
Returns Array where True indicates a match
Return type numpy.ndarray of bool

Raises ValueError — If input times cannot be converted understood or if input strings do not lead to
increasing integers (i.e. “Nov-Feb” will not work, one must use [“Nov-Dec”, “Jan-Feb”] instead)

scmdata. filters.years_match(dara: List, years: Union[List[int], numpy.ndarray, int]) — numpy.ndarray
Match years in time columns for data filtering.

Parameters
* data - Input data to perform filtering on
e years — Years to match
Returns Array where True indicates a match
Return type numpy.ndarray of bool

Raises TypeError — If years is not int or list of int

1.1. License

13

https://docs.python.org/3/library/exceptions.html#TypeError
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/time.html#time.strptime
https://docs.python.org/3/library/time.html#time.strptime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

SCMData Documentation, Release 0.13.1

1.1.7 scmdata.groupby

Functionality for grouping and filtering ScmRun objects

class scmdata.groupby.RunGroupBy (run, groups)
Bases: scmdata.groupby._GroupBy

GroupBy object specialized to grouping ScmRun objects

all (dim=None, axis=None, **kwargs)
Reduce this RunGroupBy’s data by applying al/ along some dimension(s).

Parameters
e dim (str or sequence of str, optional)- Dimension(s) over which to apply all.

e axis(int or sequence of int, optional)- Axis(es)over which to apply all. Only
one of the ‘dim’ and ‘axis’ arguments can be supplied. If neither are supplied, then all is
calculated over axes.

» keep_attrs (bool, optional) — If True, the attributes (artrs) will be copied from the
original object to the new one. If False (default), the new object will be returned without
attributes.

» **kwargs (dict)— Additional keyword arguments passed on to the appropriate array func-
tion for calculating all on this object’s data.

Returns reduced — New RunGroupBy object with all applied to its data and the indicated di-
mension(s) removed.

Return type RunGroupBy

any (dim=None, axis=None, **kwargs)
Reduce this RunGroupBy’s data by applying any along some dimension(s).

Parameters
e dim (str or sequence of str, optional)- Dimension(s) over which to apply any.

e axis (int or sequence of int, optional) — Axis(es) over which to apply any.
Only one of the ‘dim’ and ‘axis’ arguments can be supplied. If neither are supplied, then
any is calculated over axes.

» keep_attrs (bool, optional) — If True, the attributes (attrs) will be copied from the
original object to the new one. If False (default), the new object will be returned without
attributes.

e **kwargs (dict)— Additional keyword arguments passed on to the appropriate array func-
tion for calculating any on this object’s data.

Returns reduced — New RunGroupBy object with any applied to its data and the indicated di-
mension(s) removed.

Return type RunGroupBy

count (dim=None, axis=None, **kwargs)
Reduce this RunGroupBy’s data by applying count along some dimension(s).

Parameters

e dim (str or sequence of str, optional) — Dimension(s) over which to apply
count.

14 Chapter 1. Brief summary

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

SCMData Documentation, Release 0.13.1

e axis (int or sequence of int, optional) — Axis(es) over which to apply count.
Only one of the ‘dim’ and ‘axis’ arguments can be supplied. If neither are supplied, then
count is calculated over axes.

» keep_attrs (bool, optional) — If True, the attributes (attrs) will be copied from the
original object to the new one. If False (default), the new object will be returned without
attributes.

e **kwargs (dict)— Additional keyword arguments passed on to the appropriate array func-
tion for calculating count on this object’s data.

Returns reduced — New RunGroupBy object with count applied to its data and the indicated
dimension(s) removed.

Return type RunGroupBy

map (func, *args, **kwargs)
Apply a function to each group and append the results

func is called like func(ar, *args, **kwargs) for each ScmRun ar in this group. If the result of this function
call is None, than it is excluded from the results.

The results are appended together using run_append(). The function can change the size of the input
ScmRun as long as run_append () can be applied to all results.

Examples

>>> def write_csv(arr):

variable = arr.get_unique_meta("variable")
.. arr.to_csv('out-{}.csv".format(variable)
>>> df.groupby("variable") .map(write_csv)

Parameters
 func (function) — Callable to apply to each timeseries.
* *args — Positional arguments passed to func.
e **kwargs — Used to call func(ar, **kwargs) for each array ar.

Returns applied — The result of splitting, applying and combining this array.

Return type ScmRun

max (dim=None, axis=None, skipna=None, **kwargs)
Reduce this RunGroupBy’s data by applying max along some dimension(s).

Parameters

e dim(str or sequence of str, optional)-Dimension(s)over which to apply max.

e axis (int or sequence of int, optional) — Axis(es) over which to apply max.
Only one of the ‘dim’ and ‘axis’ arguments can be supplied. If neither are supplied, then
max is calculated over axes.

 skipna(bool, optional)-IfTrue, skip missing values (as marked by NaN). By default,
only skips missing values for float dtypes; other dtypes either do not have a sentinel missing
value (int) or skipna=True has not been implemented (object, datetime64 or timedelta64).

1.1.

License 15

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

SCMData Documentation, Release 0.13.1

* keep_attrs (bool, optional) - If True, the attributes (attrs) will be copied from the
original object to the new one. If False (default), the new object will be returned without
attributes.

e **kwargs (dict)— Additional keyword arguments passed on to the appropriate array func-
tion for calculating max on this object’s data.

Returns reduced — New RunGroupBy object with max applied to its data and the indicated di-
mension(s) removed.

Return type RunGroupBy

mean (dim=None, axis=None, skipna=None, **kwargs)
Reduce this RunGroupBy’s data by applying mean along some dimension(s).

Parameters

e dim (str or sequence of str, optional) — Dimension(s) over which to apply
mean.

e axis (int or sequence of int, optional) — Axis(es) over which to apply mean.
Only one of the ‘dim’ and ‘axis’ arguments can be supplied. If neither are supplied, then
mean is calculated over axes.

e skipna (bool, optional)-If True, skip missing values (as marked by NaN). By default,
only skips missing values for float dtypes; other dtypes either do not have a sentinel missing
value (int) or skipna=True has not been implemented (object, datetime64 or timedelta64).

» keep_attrs (bool, optional) — If True, the attributes (attrs) will be copied from the
original object to the new one. If False (default), the new object will be returned without
attributes.

o **kwargs (dict)— Additional keyword arguments passed on to the appropriate array func-
tion for calculating mean on this object’s data.

Returns reduced — New RunGroupBy object with mean applied to its data and the indicated
dimension(s) removed.

Return type RunGroupBy

median (dim=None, axis=None, skipna=None, **kwargs)
Reduce this RunGroupBy’s data by applying median along some dimension(s).

Parameters

e dim (str or sequence of str, optional) - Dimension(s) over which to apply me-
dian.

e axis (int or sequence of int, optional) - Axis(es) over which to apply median.
Only one of the ‘dim’ and ‘axis’ arguments can be supplied. If neither are supplied, then
median is calculated over axes.

e skipna (bool, optional)-IfTrue, skip missing values (as marked by NaN). By default,
only skips missing values for float dtypes; other dtypes either do not have a sentinel missing
value (int) or skipna=True has not been implemented (object, datetime64 or timedelta64).

» keep_attrs (bool, optional) — If True, the attributes (attrs) will be copied from the
original object to the new one. If False (default), the new object will be returned without
attributes.

e **kwargs (dict)— Additional keyword arguments passed on to the appropriate array func-
tion for calculating median on this object’s data.

16 Chapter 1. Brief summary

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

SCMData Documentation, Release 0.13.1

Returns reduced — New RunGroupBy object with median applied to its data and the indicated
dimension(s) removed.

Return type RunGroupBy

min(dim=None, axis=None, skipna=None, **kwargs)
Reduce this RunGroupBy’s data by applying min along some dimension(s).

Parameters

dim (str or sequence of str, optional)- Dimension(s) over which to apply min.

axis (int or sequence of int, optional) — Axis(es) over which to apply min.
Only one of the ‘dim’ and ‘axis’ arguments can be supplied. If neither are supplied, then
min is calculated over axes.

skipna (bool, optional)-If True, skip missing values (as marked by NaN). By default,
only skips missing values for float dtypes; other dtypes either do not have a sentinel missing
value (int) or skipna=True has not been implemented (object, datetime64 or timedelta64).

keep_attrs (bool, optional) — If True, the attributes (artrs) will be copied from the
original object to the new one. If False (default), the new object will be returned without
attributes.

**kwargs (dict)— Additional keyword arguments passed on to the appropriate array func-
tion for calculating min on this object’s data.

Returns reduced — New RunGroupBy object with min applied to its data and the indicated di-
mension(s) removed.

Return type RunGroupBy

prod (dim=None, axis=None, skipna=None, **kwargs)
Reduce this RunGroupBy’s data by applying prod along some dimension(s).

Parameters

dim(str or sequence of str, optional)-Dimension(s) over which to apply prod.

axis (int or sequence of int, optional) — Axis(es) over which to apply prod.
Only one of the ‘dim’ and ‘axis’ arguments can be supplied. If neither are supplied, then
prod is calculated over axes.

skipna (bool, optional)-If True, skip missing values (as marked by NaN). By default,
only skips missing values for float dtypes; other dtypes either do not have a sentinel missing
value (int) or skipna=True has not been implemented (object, datetime64 or timedelta64).

min_count (int, default: None) - The required number of valid values to perform
the operation. If fewer than min_count non-NA values are present the result will be NA.
Only used if skipna is set to True or defaults to True for the array’s dtype. New in version
0.10.8: Added with the default being None. Changed in version 0.17.0: if specified on an
integer array and skipna=True, the result will be a float array.

keep_attrs (bool, optional) — If True, the attributes (artrs) will be copied from the
original object to the new one. If False (default), the new object will be returned without
attributes.

**kwargs (dict)— Additional keyword arguments passed on to the appropriate array func-
tion for calculating prod on this object’s data.

Returns reduced — New RunGroupBy object with prod applied to its data and the indicated
dimension(s) removed.

Return type RunGroupBy

1.1. License

17

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

SCMData Documentation, Release 0.13.1

reduce (func, dim=None, axis=None, **kwargs)
Reduce the items in this group by applying func along some dimension(s).

Parameters

func (function) - Function which can be called in the form func(x, axis=axis, **kwargs)
to return the result of collapsing an np.ndarray over an integer valued axis.

dim (..., str or sequence of str, optional) — Not used in this implementation

axis (int or sequence of int, optional) — Axis(es) over which to apply func.
Only one of the ‘dimension’ and ‘axis’ arguments can be supplied. If neither are supplied,
then func is calculated over all dimension for each group item.

**kwargs (dict)— Additional keyword arguments passed on to func.

Returns reduced — Array with summarized data and the indicated dimension(s) removed.

Return type ScmRun

std(dim=None, axis=None, skipna=None, **kwargs)
Reduce this RunGroupBy’s data by applying std along some dimension(s).

Parameters

dim (str or sequence of str, optional)- Dimension(s) over which to apply std.

axis(int or sequence of int, optional)- Axis(es)over which to apply szd. Only
one of the ‘dim’ and ‘axis’ arguments can be supplied. If neither are supplied, then std is
calculated over axes.

skipna (bool, optional)-If True, skip missing values (as marked by NaN). By default,
only skips missing values for float dtypes; other dtypes either do not have a sentinel missing
value (int) or skipna=True has not been implemented (object, datetime64 or timedelta64).

keep_attrs (bool, optional) — If True, the attributes (artrs) will be copied from the
original object to the new one. If False (default), the new object will be returned without
attributes.

**kwargs (dict)— Additional keyword arguments passed on to the appropriate array func-
tion for calculating std on this object’s data.

Returns reduced — New RunGroupBy object with std applied to its data and the indicated di-
mension(s) removed.

Return type RunGroupBy

sum(dim=None, axis=None, skipna=None, **kwargs)
Reduce this RunGroupBy’s data by applying sum along some dimension(s).

Parameters

dim (str or sequence of str, optional)-Dimension(s) over which to apply sum.

axis (int or sequence of int, optional) — Axis(es) over which to apply sum.
Only one of the ‘dim’ and ‘axis’ arguments can be supplied. If neither are supplied, then
sum is calculated over axes.

skipna (bool, optional)-If True, skip missing values (as marked by NaN). By default,
only skips missing values for float dtypes; other dtypes either do not have a sentinel missing
value (int) or skipna=True has not been implemented (object, datetime64 or timedelta64).

min_count (int, default: None) - The required number of valid values to perform
the operation. If fewer than min_count non-NA values are present the result will be NA.
Only used if skipna is set to True or defaults to True for the array’s dtype. New in version

18

Chapter 1. Brief summary

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

SCMData Documentation, Release 0.13.1

0.10.8: Added with the default being None. Changed in version 0.17.0: if specified on an
integer array and skipna=True, the result will be a float array.

keep_attrs (bool, optional) — If True, the attributes (attrs) will be copied from the
original object to the new one. If False (default), the new object will be returned without
attributes.

**kwargs (dict)— Additional keyword arguments passed on to the appropriate array func-
tion for calculating sum on this object’s data.

Returns reduced — New RunGroupBy object with sum applied to its data and the indicated di-
mension(s) removed.

Return type RunGroupBy

var (dim=None, axis=None, skipna=None, **kwargs)
Reduce this RunGroupBy’s data by applying var along some dimension(s).

Parameters

dim (str or sequence of str, optional)- Dimension(s) over which to apply var.

axis (int or sequence of int, optional) — Axis(es) over which to apply var.
Only one of the ‘dim’ and ‘axis’ arguments can be supplied. If neither are supplied, then
var is calculated over axes.

skipna (bool, optional)-If True, skip missing values (as marked by NaN). By default,
only skips missing values for float dtypes; other dtypes either do not have a sentinel missing
value (int) or skipna=True has not been implemented (object, datetime64 or timedelta64).

keep_attrs (bool, optional) — If True, the attributes (attrs) will be copied from the
original object to the new one. If False (default), the new object will be returned without
attributes.

**kwargs (dict)— Additional keyword arguments passed on to the appropriate array func-
tion for calculating var on this object’s data.

Returns reduced — New RunGroupBy object with var applied to its data and the indicated di-
mension(s) removed.

Return type RunGroupBy

1.1.8 scmdata.netcdf

NetCDF4 file operations
Reading and writing ScmRun to disk as binary

scmdata.netcdf.inject_nc_methods(cls)

Add the to/from nc methods to a class

Parameters cls — Class to add methods to

scmdata.netcdf.nc_to_run(cls, fname)

Read a netCDF4 file from disk

Parameters fname (str)— Filename to read

See also:

scmdata.run.ScmRun. from_nc()

1.1. License

19

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

SCMData Documentation, Release 0.13.1

scmdata.netcdf.run_to_nc(run, fname, dimensions=('region’,), extras=(), **kwargs)
Write timeseries to disk as a netCDF4 file

Each unique variable will be written as a variable within the netCDF file. Choosing the dimensions and extras
such that there are as few empty (or nan) values as possible will lead to the best compression on disk.

Parameters
e fname (str) — Path to write the file into

e dimensions (iterable of str) — Dimensions to include in the netCDF file. The time
dimension is always included (if not provided it will be the last dimension). An additional
dimension (specifically a co-ordinate in xarray terms), “_id”, will be included if extras is
provided and any of the metadata in extras is not uniquely defined by dimensions. “_id”
maps the timeseries in each variable to their relevant metadata.

* extras (iterable of str)-— Metadata columns to write as variables in the netCDF file
(specifically as “non-dimension co-ordinates” in xarray terms, see xarray terminology for
more details). Where possible, these non-dimension co-ordinates will use dimension co-
ordinates as their own co-ordinates. However, if the metadata in extras is not defined by
a single dimension in dimensions, then the extras co-ordinates will have dimensions of
“_id”. This “_id” co-ordinate maps the values in the extras co-ordinates to each timeseries
in the serialised dataset. Where “_id” is required, an extra “_id” dimension will also be added
to dimensions.

» kwargs — Passed through to xarray.Dataset.to_netcdf()
See also:

scmdata.run.ScmRun. to_nc()

1.1.9 scmdata.offsets

Allow stepping through time using xarray’s offset functionality

Provides similar functionality to https://pandas.pydata.org/pandas-docs/stable/user_gui de/timeseries.html#dateoffset-
objects

scmdata.offsets.generate_range (start: cftime._cftime.datetime, end: cftime._cftime.datetime, offset:
xarray.coding.cftime_offsets.BaseCFTimeOffset, date_cls:
cftime._cftime.datetime = <class 'cftime._cftime.DatetimeGregorian'>) —
Iterable[cftime._cftime.datetime]
Generate a range of datetime objects between start and end, using offset to determine the steps.

The range will extend both ends of the span to the next valid timestep, see examples.
Parameters

* start (cftime.datetime) — Starting datetime from which to generate the range (noting
roll backward mentioned above and illustrated in the examples).

* end (cftime.datetime) — Last datetime from which to generate the range (noting roll for-
ward mentioned above and illustrated in the examples).

» offset — Offset object for determining the timesteps.
* date_cls(cftime.datetime) - The time points will be returned as instances of date_cls
Yields cftime.datetime — Next datetime in the range (the exact class is specified by date_cls)

Raises ValueError — Offset does not result in increasing cftime.datetime’s

20 Chapter 1. Brief summary

https://docs.python.org/3/library/stdtypes.html#str
https://xarray.pydata.org/en/stable/terminology.html
http://xarray.pydata.org/en/stable/generated/xarray.Dataset.to_netcdf.html#xarray.Dataset.to_netcdf
https://pandas.pydata.org/pandas-docs/stable/user_gui
https://docs.python.org/3/library/exceptions.html#ValueError

SCMData Documentation, Release 0.13.1

Examples

The range is extended at either end to the nearest timestep. In the example below, the first timestep is rolled back
to st Jan 2001 whilst the last is extended to 1st Jan 2006.

>>> import datetime as dt

>>> from pprint import pprint

>>> from scmdata.offsets import to_offset, generate_range
>>> g = generate_range(

dt.datetime(2001, 4, 1),

dt.datetime (2005, 6, 3),

to_offset("AS™),

>>> pprint([d for d in g])
[cftime.DatetimeGregorian(2001, 1, 1, 0, 0, 0, 0),
cftime.DatetimeGregorian(2002, 1, 1, 0, 0, 0, 0),
cftime.DatetimeGregorian(2003, 1, 1, 0, 0, 0, 0),
cftime.DatetimeGregorian(2004, 1, 1, 0, 0, 0, 0),
cftime.DatetimeGregorian(2005, 1, 1, 0, 0, 0, 0),
cftime.DatetimeGregorian(2006, 1, 1, 0, 0, 0, 0]

In this example the first timestep is rolled back to 31st Dec 2000 whilst the last is extended to 31st Dec 2005.

>>> g = generate_range(
dt.datetime (2001, 4, 1),
dt.datetime (2005, 6, 3),
. to_offset("A"),
vee)
>>> pprint([d for d in g])

[cftime.DatetimeGregorian(2000, 12, 31, 0, 0, 0, 0),
cftime.DatetimeGregorian(2001, 12, 31, 0, 0, 0, 0),
cftime.DatetimeGregorian(2002, 12, 31, 0, 0, 0, 0),
cftime.DatetimeGregorian(2003, 12, 31, 0, 0, 0, 0),
cftime.DatetimeGregorian(2004, 12, 31, 0, 0, 0, 0),
cftime.DatetimeGregorian(2005, 12, 31, 0, 0, 0, 0)]

In this example the first timestep is already on the offset so stays there, the last timestep is to 1st Sep 2005.

>>> g = generate_range(
dt.datetime (2001, 4, 1),
dt.datetime (2005, 6, 3),
. to_offset("QS™),
cee)
>>> pprint([d for d in g])
[cftime.DatetimeGregorian(2001, 4, 1,
cftime.DatetimeGregorian(2001, 7, 1, 0, 0, O,
cftime.DatetimeGregorian(2001, 10, 1, 0, 0, 0, 0),
cftim